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This paper treats a class of codes made possible by 

restrictions on measurement related to the uncertainty 

principal. Two concrete examples and some general 

results are given. 
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We will first give two concrete examples of conjugate 

coding and then proceed to a more abstract treatment. 

Example One: A means for transmitting 
two messages either but not both of 
which may be received. 

The communication channel is a light pipe or guide down 

which polarized light is sent. Since the information will be 

conveyed by variat£ons in ths polarization, it is essential 

that the light pipe does not depolarize the light and that 

all polarizations of light travel with the same velocity 

and attenuation. 

The two messages are rendered into the form of two 

binary sequences. The transmitter then sends bursts of 

light at times that we will label T I, T 2, etco The amplitude 

of the bursts is adjusted so that it is unli]4ely that more 

than one photon from each burst will be detected at the 

receiving end of the light pipe. 

Before emitting the ith burst (i=1,2 ...), the transmitter 

chooses one of the two messages in a random manner by flipping 

a coin or selecting a bit from a table of random numbers. If 

the first message is chosen, the ith burst is polarized 

either vertically or horizontally depending on whether the 

ith digit of the first binary sequence is a zero or a one. 

If the second message is chosen, the ith burst is polarized 

in either the right or left-hand circular sense depending on 

whether the ith digit of the second message is a zero or a 

one. See Fig. l, next sheet. 

The receiver contains a quarter wave plate and bire- 

fringent crystal, or some other analyzer, that separates 
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orthogonally polarized components of the light wave into 

spatially separate beams. Following this is a pair of the 

best available photomultiplier tubes° If the first message 

is to be received, the analyzer is arranged so as to send 

vertically polarized photons to one phototube and horizontally 

polarized photons to the other. If the second message is to 

be received, the separation is made with respect to right and 

left-hand circular polarization. 

Now if the linear polarization of a photon is measured, 

all chance of measuring its circular polarization is lost. 

Thus, if the receiver is set to receive the first message, 

nothing at all is learned about the contents of the second 

message. Likewise, when the receiver is set to receive the 

second message, it destroys all information concerning the 

first message. If the receiver is set up to sort the photons 

with respect to some elliptical polarizations intermediate 

between linear and circqlar, less information about each 

message is recovered than when the receiver makes the best 

measurement for the reception of one message alone. 

Of course, even when the receiver is set for the first 

message, a full knowledge of the first sequence is not 

recovered. In fact, half the digits of the first sequence 

never even influence the transmitted signal and at the 

corresponding times, when the second message is being 

transmitted, the receiver output has an equal probability 

of being a zero or a one. This noise introduced by the 

coding scheme, as well as the noise due to the channel, the 

photon shot noise, and the photomultiplier noise, may be 
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overcome if an error correcting code of the usual sort is 

used in forming the binary sequences from the original 

messages. Care must be taken, for too much redundancy 

would allow both messages to be recovered by the alternate 

reception of one sequence and then the other. 

There is no way that the receiver can recover the 

complete contents of more than one of the conjugately coded 

messages so long as it is confined to making measurements 

on one burst of photons at a time. In principle, there 

exist very complicated measurements that allow recovery of 

all the transmitted information. To see this, consider the 

transmission of two messages of finite length. The trans- 

mitter will produce a signal consisting of a finite number of 

bursts of polarized light and the entire signal may be 

described by a single vector ~ in a large Hilbert space 

spanned by all possible finite transmissions. If one of the 

messages is changed, a state corresponding to a different 

vector 4' is produced. The change from Y to Y' could be 

detected unambiguously by a receiver of the type previously 

described, if set to receive the message that was changed. 

For this to be possible, Y must be orthogonal to Y'. It 

follows that the set [Y] of the vectors corresponding to all 

possible pairs of finite messages is ortho-normal and therefore 

there exists an Hermetian operator or a set of commuting 

Hermetian operators corresponding to a measurement or 

measurements that can distinguish all the possible signals. 
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There is an easy extension to the case of three messages, 

no two of which may be recovered. One simply transmits a 

third binary sequence using light in the two polarization 

states at 45 ° to vertical and horizontal. Extension to more 

than three messages is not straight forward. 

The above system for sending two mutually exclusive 

messages could be built at the present time. Though it is 

possible in principle to beat the system and recover both 

messages, to do so would require measurements that are 

completely beyond the reach of present-day technology. The 

system therefore works in practice but not in principle~ The 

next example is in the opposite category; it is foolproof 

in principle, but it probably could not be built at the 

present time. 

Example Two: Money that it is physically 
impossible to counterfeit. 

A piece of quantum money will contain a number of 

isolated two-state physical systems such as, for example, 

isolated nuclei of spin 1/2. For each two-state system, 

let a and b represent a pair of ortho-normal base states and 

let ~ = i//2(a+b) and ~ = i//2(a-b) represent another pair. 

The two state systems must be well enough isolated from 

the rest of the universe so that if one of them is initially 

in the state a or ~, there is little chance that a measurement 

made during the useful lifetime of the money will find it in 

the orthogonal states b or ~, respectively. There is no 
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device operating at present in which the "phase coherence" 

of a two-state system is preserved for longer than about a 

second; however, the continuing advance of cryogenic technique 

will surely change this. 

Let us suppose to be definite that the money contains 

twenty isolated systems, S i, i=l, 2, ... 20. At the mint 

they create two random binary sequences of twenty digits 

each which we will call M i and N i, i=i~2,...20, M i = 0 oK i, 

N i = 0 or 1. Then the two-state systems are placed in one 

of the four states a, b, ~ or ~ in accordance with the 

scheme shown in Fig. 2. 
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FIG. 2 

The money is also given a serial number which is 

printed on it in the usual way and the two binary sequences 
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describing its initial state are kept on record at the mint 

and perhaps at a number of branch banks. 

When the money is returned to the mint, a check is 

made to see if each isolated system is still in its initial 

state or whether it has switched to the orthogonal state. 

Now consider the problem of someone who would duplicate 

a piece of quantum money. He cannot recover N i because, since 

he does not know M i, he does not know what measurements to 

.. . that distinguishes make on S l A measurement on a particular S 

a from b must necessarily destroy all chance of distinguishing 

from ~. Likewise a measurement that distinguishes ~ from 

destroys the chance of distinguishing a from b. Suppose 

a counterfeiter goes ahead anyway, makes some measurement on 

the S i and produces money with the new S i in the states found 

by his measurements. Then for each i, there is a 50% chance 

that he will make the wrong measurement and in this event, 

there is a 50% chance that a measurement at the mint will show 

S i to be in the wrong state. Thus, there is a 1/4 chance 

of each digit being found wrong and the probability of the 

whole counterfeit coin passing inspection is only (3/4) 20 < 

0. 00317. 

Could there be some way of duplicating the money without 

No, because if one copy can be learning the sequence N i. 

made (so that there are two pieces of the money) then many 

copies can be made by making copies of copies. Now given 

an unlimited supply of systems in the same state, that state 

can be determined. Thus, the sequence N i could be recovered. 

But this is impossible. 
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Conjugate Bases 

If the momentum of a particle is known, then nothing is 

known about its position; in other words, it is equally likely 

to be found in all regions possessing a fixed volume V. Like- 

wise, if the position is known, then nothing is known about 

its momentum. The same relation holds between all pairs of 

conjugate variables and this suggests an extension of the idea 

of conjugation from variables to basis sets. 

Let 
[ai], i=l,2,...,N and [hi], i=l, .... N 

be two ortho-normal bases for an N dimensional Hilbert space. 

We call such a pair conjugate if and only if I (ai,bj)l 2 = iN 

for all i and j. Physically, if a system is in a state 

described by a i, i=l, ...,N, then it_must have an equal 

probability of being found in any of the states hi, i=l, ...,N 

and vice versa, if it is in a state b it must have an 
l 

equal probability to be found in any a • 
1 

A collection of bases will be called conjugate if each 

pair of bases in the collection is conjugate. We can now 

present a definition. 

A conjugate code is any communication scheme in which the 

physical systems used as signals are placed in states corres- 

ponding to elements of several conjugate basis of the Hilbert 

space describing the individual systems. Note that in the 

case where the sequence of signals has more than one element 

the above definition does not require the vectors describing 

entire transmissions to be elements of conjugate base sets. 

This last condition was fulfilled in the second example but 

not in the first. 

* (ai,/b i) is the inner product <ailbi > in the Dirac notation. 
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In addition to pairs of conjugate bases, there are triplets 

of conjugate bases. For example, in a two-dimensional system 

we have 

[~, b] lal2:Ibl2=l (a,b)=0 

[i/72 (a+b), i/72 (a-b) ] 

{i//2(a+ib) , 1//(a-ib)] o 

Three such bases were used in the scheme for sending 

three messages no two of which can be received. 

Are there sets bigger than triplets? The following 

theorem shows that there is no limit to the multiplicity of 

mutually conjugate basis sets. 

Theorem: In an Hilbert space of dimension 2 (N-I) ;/2, 

there exists sets of N mutually conjugate basis sets. Proof: 
be 

Suppose-the theorem to/true for N ~ M //o Let 

C~=i...M be a set of mutually conjugate ortho-normal basis on an 

Hilbert space H of dem° 2(M-l) :/2 ~ D 

As[ i s] a i=l .o. D 

and 2 

, a )i 

for all ~ # 6 o 

We can then construct M+i mutually conjugate bases on 

the space H ~ H ~ ~.o O H = H M. * 

For the first M basis, we take a natural extension of the 

basis sets A s. Call A~ the basis s e t  of H M consisting of 

s x~ s ~ az s i, j, ~ D 
• o • i • ~ • ~ ~ o o the vectors a I a 3 

*@ is the tensor product. H x~ H' is defined as the space 
of all linear functions from H into H'. 
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Note that is ~ ~ ~, 

2 
c~ am ~ m ~ ) 2 , = I X 

---X (a z~, ap ~) I 

so these basis sets [A~] are mutually conjugate. 

For the last basis, we take the vectors 

1 D 27Ti ~ 1 2 M 
V(q'[P~]) = 7~ E e D x a K @ ap2(K)... ~ apM(K ) 

K=i 

= (}) 
M 

here, q = 1 ... D and [P~], ~ = 2, 3 ... M is a set of cyclic 

permutations on the integers 1 ... D. (i.e., P~(n) = 

n+JG Mod(D) for some integer J .) Call this last basis V. 

Since there are D cyclic permutations on D intergers, 

there are D M-I sets [P~] and DxD M-1 = D M vectors V(q,[P~]) in 

V; as there should be. 

The proof that V is ortho-normal is obvious. 

So, actually, is the proof that V is conjugate to the 

other basis sets, but I give it since it is the heart of the 

matter. Fix ~ and let W m ai~ ...~ a Z be a typical vector 

of A s. Then 

I (W,V(q, [PSI) )12 
D 27ri qK 

D (ai(Z~ ~ 1 M 
= ~I Z e x ... az 'aK Q'''aP M(K) ) 1 

K=i 

The inner product will be zero unless ap~(K ) equals the ~th 

1 
term of W. (Let P be the identity.) This happens for just 

one value of K, call it k. Then I (W,V(q, [P~]))I 2 = 

~ ' M 2 
lID1 (a i ® ... a~ , a k (D"" apM(k))l 

where the ~th vector is the same on both sides of the inner 

product. As for the rest, I (ai ~, a~P~k)) 12 = i/D 


