
6.S895: Problem Set 1

Due: 23:59 March 8, 2024

1. Entanglement practice (5pt)

(a) (1pt) Prove that |EPR⟩ ⟨EPR| is the only two-qubit mixed state where measuring both
qubits in the X or Z basis yields the same outcome with certainty.

(b) (1pt) The EPR state for d-dimensional qudits is |EPRd⟩ = 1√
d

∑
i |i⟩⊗|i⟩. For any d×d

matrix M , prove Ando’s identity:

(I ⊗M) |EPRd⟩ = (MT ⊗ I) |EPRd⟩ .

Extra credit (0.1pts): who was Ando?

(c) (1pt) The Schmidt decomposition theorem states that any bipartite pure state |Ψ⟩AB,
it can be written as

|Ψ⟩AB =

ℓ∑
k=1

αk |uk⟩A ⊗ |vk⟩B ,

where ℓ = min(dim(A), dim(B)), and the sets of vectors {|uk⟩} and {|vk⟩} are each
orthonormal.

Prove that if |Ψ⟩AB and |Φ⟩AB both purify the same density matrix ρA, then they are
related by a unitary on the B system:

|Ψ⟩AB = (I ⊗ U) |Φ⟩AB .

(d) (1pt) Show that if ρAB is a pure state then any purification |Ψ⟩ABE can be written as
a tensor product |Ψ1⟩AB ⊗ |Ψ2⟩E .

(e) (1pt) Prove that there is no three-qubit state |ψ⟩ABE such that measuring ABE all in
the X basis and all in the Z basis always yields the same outcome.

2. Single-qubit quantum money schemes (16pt)
Consider the map T : L(Cd) → L(∨n(Cd)) defined as follows:

T (ρ) = P d,n
sym(ρ⊗ Id⊗m−1

d )P d,n
sym (1)

As a reminder, ∨n(Cd) denotes the symmetric subspace on n qudits, L(H) for any Hilbert
space H denotes the space of linear operators on H (density matrices live in this space),

and P d,n
sym denotes the projector onto the symmetric subspace in n qudits. In words, we can

describe the action of T roughly as follows: T takes a single-qudit density matrix as input,
adds some extra dimensions by tensoring with identity, and then projects into the symmetric
subspace in the new n-qudit space.
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(a) (3pt) Show that T is completely positive. (If you don’t remember what this means,
check Definition 2 of Lecture 1 from the lecture notes.)

(b) (5pt) Define a T̂ with the same input and output spaces as T that is an appropriately
normalised version of T which is a valid quantum channel, and show that T̂ is a valid
quantum channel.

(c) (5pt) For an ensemble consisting of the uniform distribution over k single-qubit states
|ψ1⟩ , . . . , |ψk⟩, define the success probability of any cloner C on this k-state ensemble to
be

1

k

k∑
i=1

Tr
[(

|ψi⟩ ⊗ |ψi⟩
)(

⟨ψi| ⊗ ⟨ψi|
)
C(|ψi⟩ ⟨ψi|)

]
. (2)

For instance, in class we studied this quantity for theWiesner ensemble {|0⟩ , |1⟩ , |+⟩ , |−⟩},
where k = 4. Show that, for any single-qubit quantum money scheme drawing its states
uniformly from a k-state ensemble for any k, there is a cloning attack which succeeds with
probability at least 2

3 . (The optional part f of this problem shows that 2
3 is tight: that

is, there is a single-qubit money scheme where the best attack succeeds with probability
at most 2

3 .)

(d) (3pt) Show that any single-qubit money scheme which draws its money states from an
ensemble of only two pure states cannot be optimal (i.e. there is always an attack that
succeeds with probability strictly better than 2

3).

(e) (optional, 0pt) Think about whether this is true for three-state and four-state money
ensembles over lunch, while taking a walk, or in the shower. Note: do NOT under any
circumstances do all three at once.

(f) (optional, 0pt) In class, we showed that the optimal cloning probability for the single-
qubit Wiesner scheme was 3

4 . Prove (using the same method or a different one) that
the optimal cloning probability for the following six-state ensemble (where each state is
chosen with 1

6 probability)

{|ψ1⟩ = |0⟩ , |ψ2⟩ = |1⟩ , |ψ3⟩ = |+⟩ , |ψ4⟩ = |−⟩ , |ψ5⟩ =
|0⟩+ i |1⟩√

2
, |ψ6⟩ =

|0⟩ − i |1⟩√
2

}

(3)

is 2
3 , and therefore that this six-state ensemble improves over the Wiesner scheme. (It

then follows from part (c) this six-state scheme is optimal.)

3. Attacking the mutual information definition of QKD security (7pt) In this problem
we introduce a special notation for tensor products of Pauli matrices. First, label the Pauli
matrices by

P0 := I, P1 := X,P2 := Y, P3 := Z.

Then for y ∈ {0, . . . , 3}n, we let Py be the n-qubit tensor product operator

Py =

n⊗
i=1

Pyi .

(a) (2pt) For x ∈ {0, 1} and y ∈ {0, . . . , 3}n, define the state

ρAE =
1

22n+1

∑
x∈{0,1}

∑
y∈{0,...,3}n

|xy⟩ ⟨xy|A ⊗ ρ
(x,y)
E ,
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where

ρ
(x,y)
E =

1

2n
(I + (−1)xPy),

Prove that this is a valid quantum state. We will imagine that the A register is held by
Alice and contains her 2n+ 1-bit secret key, and the E register is held by Eve.

(b) (2pt) It can be shown that E has exponentially small mutual information with x, y:
that is, any measurement on E will reveal exponentially little information about x and
y. Now, suppose Alice measures her register to obtain a key x, y, and subsequently
Eve learns y. Show that Eve can perform a measurement {My

x′} on E whose outcome
x′ equals x with certainty. Intuitively, this means that learning 2n bits of information
reveals 2n+ 1 bits of information about the key.

(c) (2pt) Show that there exists a two-outcome measurement on the AE systems that, with
advantage 1/2, distinguishes ρAE from any state σAE of the form

σAE =
1

22n+1

∑
x,y

|xy⟩ ⟨xy| ⊗ σE ,

where σE is any density matrix on the E system. Here “advantage” means that the
difference in the probabilities that the measurement returns 0 for ρAE and σAE is 1/2.

(d) (1pt) Argue that ρAE does not satisfy the security definition we gave in class, i.e. that
for all states σE ,

∥ρAE − 1

22n+1

∑
x,y

|xy⟩ ⟨xy| ⊗ σE∥1 ≥ c

for some constant c.
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