
Post-Quantum Cryptography

1 Introduction

In the last few lectures, we saw that a certain cryptographic task, namely key exchange, can be achieved
with unconditional security (assuming authenticated channels) using quantum information. Yet, other
common tasks, including commitments, coin-flipping and oblivious transfer, provably cannot.

In the next few lectures, we will switch gears and move to a world where the honest parties are classical
but the adversaries are quantum. This is referred to as post-quantum cryptography. We will revisit classical
cryptographic primitives and tasks and see which ones can be achieved in such a world, and the tools it
takes to get there. In particular, we will see post-quantum secure commitment, zero knowledge and proof
of knowledge protocols. But first, let’s start with a primer on classical cryptography.

2 Classical Cryptography: The Easy Case

One-way Functions. A function family  = {𝐹𝑛}𝑛∈ℕ where each 𝐹𝑛 maps 𝑛 bits to 𝑚 = 𝑚(𝑛) bits is
one-way if for every probabilistic polynomial-time adversary ,

Pr[𝐹𝑛(𝑥
′
) = 𝐹𝑛(𝑥) ∶ 𝑥 ← {0, 1}

𝑛
;(𝐹𝑛(𝑥)) = 𝑥

′
] = negl(𝑛)

where negl(⋅) is a negligible function. That is, given 𝐹𝑛(𝑥) for a random 𝑥 in the domain, no adversary can
produce a pre-image for it.

If 𝑓 is hard to invert for quantum algorithms, that is, changing the quantifier in the above definition
from probabilistic polynomial-time to quantum polynomial-time, we immediately have quantum-secure
one-way functions (we will call them QOWF). The subset sum problem as well as the learning with errors
problem, as we will define later, give us candidates for QOWFs. Anand: There are functions that we
believe are classical OWFs but know are not QOWFs, e.g. ones based on factoring.

If 𝑓 is a one-to-one, onto function, and it is one-way, then 𝑓 is a one-way permutation.
Anand: Concretely, the candidate function based on LWE is 𝐹(𝐴, 𝑠, 𝑒) = (𝐴, 𝐴𝑠 + 𝑒 mod 𝑞), where 𝐴

is a matrix and 𝑠, 𝑒 are vectors in 𝔽𝑞 , with 𝑒 consisting of “small” numbers. We will learn a lot more about
this later.

Anand: Audience question: is there a candidate for post-quantum OWPs? Answer: no candidate yet!

Pseudorandom Generators. The same holds for pseudorandom generators (PRG) which are function
families  = {𝐺𝑛}𝑛∈ℕ where each 𝐺𝑛 expands 𝑛 bits to 𝑚(𝑛) > 𝑛 bits. The security requirement says that
for any probabilistic polynomial-time adversary ,

Adv() ∶=

|
|
|
|

Pr[(𝑦) = 1 ∶ 𝑦 ← {0, 1}
𝑚
] − Pr[(𝑦) = 1 ∶ 𝑥 ← {0, 1}

𝑛
; 𝑦 = 𝐺𝑛(𝑥)]

|
|
|
|

= negl(𝑛)

where negl(⋅) is a negligible function. That is, no p.p.t. adversary can distinguish between a uniformly
random 𝑚-bit string and the output of the pseudorandom generator applied to a uniformly random 𝑛-bit
string.

The “HILL” construction by Håstad, Impagliazzo, Levin and Luby (HILL) of PRGs from OWFs as well
as their proof of security are entirely black-box, and go through even if the adversary is quantum. That is,
if there is a QOWF, then there is a QPRG.

Anand: However, the HILL security reduction is not automatic if the adversary has quantum auxiliary
information! This case might still be open!
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3 Pseudorandom Functions

The situation changes with pseudorandom functions. You should think of pseudorandom functions as
pseudorandom generators that stretch by a large, possibly exponential, amount. For example, from 𝑛 bits
to 2

𝑛 bits. However, in that case, it doesn’t make sense to ask the function to write down the whole output
in one go as it would take exponential time. Instead, we ask for random access: i.e. given the key/seed
𝜎 ∈ {0, 1}

𝑛 and an index 𝑖 ∈ [2
𝑛
], produce the 𝑖𝑡ℎ bit of the output in poly(𝑛) time.

Formally, a pseudorandom function family  = {𝐹𝐾 ∶ {0, 1}
𝓁
→ {0, 1}

𝑚
∶ 𝐾 ∈ {0, 1}

𝑛
} is called pseudo-

random if for every probabilistic polynomial-time oracle adversary ,

Pr[𝐹𝐾
(1
𝑛
) = 1] − Pr[𝑅

(1
𝑛
) = 1]

where 𝑅 is a uniformly random function from {0, 1}
𝓁 to {0, 1}

𝑚.1 In the quantum world, one could consider
two cases.

ClassicalQueries. One could change the definition above to let the adversary be a quantum polynomial-
time algorithm, but restrict her to make classical queries. In this case, as with PRGs, post-quantum security
follows immediately, assuming that the underlying assumption that the PRF is built on is post-quantum
secure.

QuantumQueries. The more challenging situation is where the adversary can query on a superposition
of inputs. For example, they could query the oracle  (which is either 𝐹𝐾 or 𝑅) on the state

|𝜓⟩ = ∑

𝑥∈{0,1}
𝑛

𝛼𝑥 |𝑥⟩ |0
𝑛
⟩

and get as output
∑

𝑥∈{0,1}
𝑛

𝛼𝑥 |𝑥⟩ |0
𝑛
⟩ → ∑

𝑥∈{0,1}
𝑛

𝛼𝑥 |𝑥⟩ |(𝑥)⟩

Thus, in one shot, the adversary can get a superposition over exponentially many outputs of the oracle.
If a PRF is post-quantum secure, is it secure against adversaries that make quantum queries? Anand:
Why even consider quantum queries? For one, security in a stronger model is always better! For another,
we will possibly be in Quantumania in a few decades, where this will be relevant. Alternatively, if the
adversary has an obfuscated circuit description of the PRF (which is kind of the sitaution in real life), then
the adversary can just implement that circuit coherently to make quantum queries.

Theorem 1. There exists a post-quantum secure PRF that is not secure against quantum-query adversaries.

Proof. The key idea is to embed a period-finding problem into the PRF. Given a PRF 𝐹𝐾 ∶ {0, 1}
𝑛
→ {0, 1}

𝑚,
construct 𝐹 ′

𝐾,𝑟
such that

𝐹
′

𝐾,𝑟
(𝑥) = 𝐹

′

𝐾,𝑟
(𝑥 ⊕ 𝑟)

for every 𝑥 in the domain. (For example, a constructive way of doing this would be to let 𝑟 = (1, 𝑠), i.e. the
first bit of 𝑟 is 1, and let 𝐹𝐾 (1, 𝑦) = 𝐹𝐾 (0, 𝑦 ⊕ 𝑟) for every 𝑦 ∈ {0, 1}

𝑛−1).
1Here, we will for simplicity restrict our attention to functions that use 𝑛-bit seeds. In reality, one has to define such a family

for each 𝑛.
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Now, 𝑟 can be recovered using Simon’s algorithm with quantum queries. Indeed, the adversary queries
the oracle on

1

2
𝑛/2

∑

𝑥∈{0,1}
𝑛

|𝑥⟩ |0
𝑚
⟩

and measures the second register to obtain

1

√

2

(|𝑥⟩ + |𝑥 ⊕ 𝑟⟩)

for some 𝑥 . Do a Hadamard transform and measure to get a vector 𝑑 which must have the property that
⟨𝑑, 𝑟⟩ = 0 (mod 2). Once you collect sufficiently many such vectors, you can do a Gaussian elimination to
figure out 𝑟 .

It is also not hard to show that 𝐹 ′
𝐾,𝑟

is secure with classical queries. Given a 𝑞-query algorithm, calculate
the probability that 𝑥𝑖 ⊕ 𝑥𝑗 = 𝑟 for some two queries 𝑥𝑖 and 𝑥𝑗 . This is at most 𝑞2/2𝑚 which is negligible as
long as 𝑚 is large enough.

For positive results, let’s look at the Goldreich-Goldwasser-Micali (GGM) “tree” construction. On the one
hand, if you are willing to lose an exponential factor in the input length, security against quantum queries
follows immediately. However, the traditional proof that handles polynomial-time classical adversaries
that, in particular, make at most a polynomial number of queries to 𝐹𝐾 (⋅), breaks down. On the other hand,
Zhandry showed that the GGM construction (as well as several other classical constructions), are secure
against adversaries making quantum queries.

4 The Right Definitions?

Secret-key Encryption. Weak pseudorandom functions are a relaxed notion of PRFs where the adver-
sary obtains polynomially many pairs (𝑟𝑖, 𝐹𝐾 (𝑟𝑖)) for random inputs 𝑟𝑖 ← {0, 1}

𝑛. That is, the adversary
does not have the power to query the PRF oracle on chosen inputs. Post-quantum secure weak PRFs are
sufficient to construct IND-CPA secure secret-key encryption schemes, as long as the adversary does not
query the challenge oracle on a superposition of messages.

On the other hand, if the adversary can make a challenge query on superpositions, say

|0⟩ ⊗ ∑

𝑚∈
|𝑚⟩ ⊗ |0⟩

where  is the message space, and get

|0⟩ ⊗ ∑

𝑚∈
|𝑚⟩ ⊗ |Enc𝐾 (0)⟩

if 𝑏 = 0 and
|0⟩ ⊗ ∑

𝑚∈
|𝑚⟩ |Enc𝐾 (𝑚)⟩

for 𝑏 = 1. The adversary can now easily tell what 𝑏 is. For example, measure the third register. In the 𝑏 = 0

case, measuring does not disturb the first and second register; while, in the 𝑏 = 1 case, the second register
collapses to some 𝑚. Doing a Hadamard transform on the second register now finishes the distinguisher’s
job. For more discussion on alternate definitions, see Gagliardoni, Hülsing and Schaffner’s work.
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Message Authentication Codes (MAC). In the case of MACs, after making 𝑞 superposition queries,
the adversary cannot produce a MAC on a “new” message, but how do you define what’s new? Boneh and
Zhandry came up with a 𝑞+1 definition where they asked the adversary to produce MACs on 𝑞+1 distinct
messages after making 𝑞 quantum queries. However, this leaves open the possibility of the adversary
querying for MACs of messages starting with 0 and producing the MAC of a message starting with 1. For
more refined definitions, see Garg, Yuen and Zhandry.

Anand: Finding a satisfactory definition here is still open. If you satisfy Vinod, he will buy you a
cookie.

5 Commitments

Another big difference between classical and post-quantum security comes up in the case of commitment
schemes. This happens even if the interaction between the adversary and the honest parties is classical, so
this is a real problem. Our exposition here closely follows Ma and Vazirani.

Recall the notion of (classical) cryptographic commitments (to classical messages) which asks for a pair
of algorithms (Com,Ver) where

• The key-generation algorithm outputs a commitment key 𝑘.

• The commitment algorithm (non-interactive for simplicity) Com𝑘(𝑚, 𝑟) outputs a commitment 𝑐.

• The verification algorithm, given the commitment key 𝑘, a commitment 𝑐, and a message-randomness
pair (𝑚, 𝑟), outputs 1 if and only if Com𝑘(𝑚, 𝑟) = 𝑐.

We will usually ignore the commitment key and assume that all algorithms get access to 𝑘.

• Hiding: For any two messages 𝑚0, 𝑚1, the distributions of Com(𝑚0; ⋅) and Com(𝑚1; ⋅) are indistin-
guishable. The indistinguishability can be statistical or computational.

• Classical Binding: It is hard to find a string 𝑐 and message-randomness pairs (𝑚0, 𝑟0) and (𝑚1, 𝑟1) such
that

Com(𝑚0; 𝑟0) = Com(𝑚1; 𝑟1) = 𝑐

Binding can be statistical or computational. Note that if the commitment scheme is statistically
(or perfectly) hiding, it has to be computationally binding. Computationally binding schemes can
produce succinct commitments whereas statistically binding ones cannot, making them particularly
attractive.

Anand: Added: Why is this a good definition? Let’s try it out for an example setting: suppose we
want to run an auction, where parties commit to their bids in advance, and then open them. How does
this definition prevent a party from, say, maliciously opening to the lowest bid plus one dollar? The idea is
that if a party in the auction could cheat, this means that should be possible for it to open to two different
values 𝑚0, 𝑚1, depending on the other bids that it observes. Now, since the committer is classical, it can be
rewound: run it once with one history of observed bids to get an opening to𝑚0, and then reset the machine
to its previous state and run it with the other history to get an opening to 𝑚1. This yields an adversary
that breaks the definition of classical binding.
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Constructions. We will describe two canonical constructions of commitment schemes: one of a per-
fectly binding, computationally hiding commitment scheme from one-way permutations; and another of a
computationally binding, statistically hiding commitment scheme from collision-resistant hash functions.

Construction 1. Let 𝑓 ∶ {0, 1}
𝑛
→ {0, 1}

𝑛 be a one-way permutation. To commit to a bit 𝑏, pick a random
𝑟 ← {0, 1}

𝑛 and output 𝑐 = (𝑓 (𝑟), ℎ(𝑟)⊕𝑚) where ℎ is a hardcore predicate for 𝑓 (e.g. the Goldreich-
Levin predicate). This construction is perfectly binding and therefore binding against even quantum
attackers. It is computationally hiding, and therefore hiding against QPT adversaries as long as 𝑓 is
a QOWP.

Construction 2. Let  be a family of collision-resistant hash functions, and  be a pairwise independent
family of functions from {0, 1}

𝑛 to {0, 1}
𝑚. The commitment key is 𝑓 ←  and ℎ ← . To commit

to a message 𝑏 (not necessarily a bit), draw an 𝑟 ← {0, 1}
𝑛 and output (𝑓 (𝑟), ℎ(𝑟) ⊕ 𝑏). Statistical

hiding follows from the fact that 𝑟 has min-entropy given 𝑓 (𝑟) (since 𝑓 is compressing) and ℎ ex-
tracts randomness (via the leftover hash lemma). Computational binding follows directly from the
collision-resistance of the family  .
An alternate construction of a succinct, computationally binding, but not necessarily hiding, com-
mitment scheme simply outputs 𝑓 (𝑏). This is clearly computationally binding and succinct.

Anand: Statistical binding is not great for two reasons. First, stat. binding implies computational
hiding, which means you don’t have everlasting hiding. Secondly, it’s impossible for a statistically bindng
commitment to be succinct: the commitment must be at least as long as the message just by the pigeonhole
principle. So we really want post-quantum security of something like Construction 2.

Post-QuantumSecurity. Imagine an attacker 𝑆 (against the binding property) producing a commitment
string 𝑐 (say, commitment to a bid in an auction) and later, opening 𝑐 to any given message 𝑚 (in this
example, determining the bid after the fact). This is clearly very bad and violates what we intuitively think
of as binding.

Indeed, the classical binding definition above prohibits this type of behavior from classical adversaries.
Indeed, if classical adversaries can open to any message at will, they can definitely produce two message-
randomness pairs, violating the classical binding requirement.

How about a quantum adversary? A quantum adversary could create a superposition over all messages
and random strings, compute the commitment algorithm in superposition and create

∑

𝑚,𝑟

|𝑚⟩ |𝑟⟩ |Com(𝑚; 𝑟)⟩

Measure the  register to get a commitment 𝑐, and send it to the receiver. Now, the adversary is left with
a state

|𝜓𝑐⟩ ∶= ∑

𝑚,𝑟∶Com(𝑚;𝑟)=𝑐

|𝑚⟩ |𝑟⟩

Later, potentially, the adversary could apply a unitary 𝑈0 to |𝜓𝑐⟩ and measure to get (0, 𝑟0) and another
unitary 𝑈1 to |𝜓𝑐⟩ and measure to get (1, 𝑟1). However, once the adversary produced one of these openings,
they destroyed |𝜓𝑐⟩, and will not be able to produce the other opening. This leads us to the following
strange behavior which is classically impossible: the adversary can open the commitment 𝑐 to either 0 or
to 1, but we cannot use him to extract both an opening to 0 and to 1.
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Anand: (TODO: check this) Moreover, if we’re statistically hiding, we know from Uhlmann’s theorem
that a possibly inefficient 𝑈0 and 𝑈1 satisfying these properties necessarily always exist!

Do such weird commitment schemes exist? This turns out to be a far more interesting question that
it might sound at first. [ARU14] show the existence of such a commitment scheme in a quantum oracle
model. [Zha19, DS23] show a “win-win” result: either every post-quantum binding commitment scheme is
also collapse-binding or one can construct very interesting objects called quantum lightning and one-shot
signatures that are not known to exist from standard cryptographic assumptions.

An Attempt: Sum-Binding. Note that if |𝜓𝑐⟩ contains an equal superposition of 0 and to 1, the adver-
sary can trivially open to 0 with probability 𝑝0 and to 1 with probability 𝑝1 where 𝑝0 + 𝑝1 = 1. This is not
an attack. However, if 𝑝0 + 𝑝1 ≥ 1+

1

poly(n) , where 𝑛 is the security parameter, we call it a successful attack.
This discussion naturally leads to the definition of sum-binding which asks that for every QPT adversary
, there is a negligible function negl(⋅) such that 𝑝0 + 𝑝1 ≤ 1 + negl(𝑛).

This definition, while appealing at first, is problematic in several respects: (1) it is a priori unclear how
to generalize this definition to more than a single bit; (2) it is unclear how to use this as a component in
larger protocols; and (3) it is unclear how to build a multi-bit commitment with any reasonable guarantee
from a sum-binding commitment scheme.

Collapse-Binding [Unr16]. The (non-obvious) definition of collapse-binding was proposed by Unruh
in 2016, and has quickly become the de facto standard of a binding definition for commitments.

Definition 2. A commitment scheme Com is termed collapse-binding (or collapsing) if every QPT adversary
 has negligible advantage in distinguishing between the following games:

In both Game 0 and Game 1, comes up with a classical commitment string 𝑐 and a quantum opening

|𝜓⟩ = ∑

𝑚,𝑟

𝛼𝑚,𝑟 |𝑚⟩ |𝑟⟩

Verify the opening: compute
∑

𝑚,𝑟

𝛼𝑚,𝑟 |𝑚⟩ |𝑟⟩ |Com(𝑚; 𝑟)⟩ ,

measure the third register, and if it is different from 𝑐, abort. In Game 0, return the  and  registers
to . In Game 1, measure the  register, and return both the  and  registers to . The adversary
returns a bit 𝑏′, and she succeeds if 𝑏′ = 𝑏.

Remark An alternate definition (in the case of bit commitment schemes) would have the adversary
apply a phase flip in case 𝑏 = 1. That is, they would return

(𝑍 ⊗ 𝐼 )∑

𝑚,𝑟

𝛼𝑚,𝑟 |𝑚⟩ |𝑟⟩ = |0⟩ ⊗ ∑

𝑟∶Com(0,𝑟)=𝑐

𝛼0,𝑟 |𝑟⟩ − |1⟩ ⊗ ∑

𝑟∶Com(1,𝑟)=𝑐

𝛼1,𝑟 |𝑟⟩ ,

to . This definition is equivalent to the one above: one way to intuitively see this is to note that in the
collapse-binding definition, one takes a qubit with the density matrix

𝜌 =
(

𝛼 𝛽

𝛾 𝛿 )
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and measure it in the standard basis to get

𝜌
′
=
(

𝛼 0

0 𝛿 )

In the second case, one gets (by a random choice of 𝑏)

𝜌
′′
=

1

2 (

𝛼 𝛽

𝛾 𝛿 )
+

1

2

𝑍
(

𝛼 𝛽

𝛾 𝛿 )
𝑍 =

(

𝛼 0

0 𝛿 )
= 𝜌

′

Properties of collapse binding.

Lemma 3. Collapse-binding implies sum-binding.

Note: very recent, highly nontrivial work showed that for single-bit commitments the reverse impli-
cation holds!

We will prove the lemma in two steps.
1. Collapse-binding implies that you “can’t change your mind after the fact.” (We’ll formalize this).

2. This implies that you’re sum-binding.
Anand: Ended here.

Swap Test. To test the overlap between two states |𝜓0⟩ and |𝜓1⟩, prepare

|+⟩ ⊗ |𝜓0⟩ ⊗ |𝜓1⟩

and do a controlled-swap where the first register is the control bit. This results in
1

√

2

⋅ (|0⟩ |𝜓0⟩ |𝜓1⟩ + |1⟩ |𝜓1⟩ |𝜓0⟩) = |+⟩ ⊗

|𝜓0⟩ |𝜓1⟩ + |𝜓1⟩ |𝜓0⟩

2

+ |−⟩ ⊗

|𝜓0⟩ |𝜓1⟩ − |𝜓1⟩ |𝜓0⟩

2

Measure the first register in the 𝑋 basis, the probability of getting a |+⟩ is
‖
‖
‖

|𝜓0⟩ |𝜓1⟩ + |𝜓1⟩ |𝜓0⟩

2

‖
‖
‖

2

=

1

4

⋅ (2 + 2 ⟨𝜓0|𝜓1⟩ ⟨𝜓1|𝜓0⟩) =

1

4

⋅ (2 + 2| ⟨𝜓0|𝜓1⟩ |
2
) =

1

2

⋅ (1 + | ⟨𝜓0|𝜓1⟩ |
2
)

A Different Overlap Test. Assume that you can prepare the state
1

√

2

(|0⟩ |𝜓0⟩ + |1⟩ |𝜓1⟩)

(Note that if you are handed |𝜓0⟩ and |𝜓1⟩, you may not be able to prepare this state; however, in our
use case below, we will show how to do this.) Measure the first qubit in the 𝑋 basis, and output the bit.
The intuition is that if 𝜓0 = 𝜓1 = 𝜓 are identical, the state is |+⟩ |𝜓⟩, and measuring the first qubit gives
us deterministically |+⟩. On the other hand, if 𝜓0 and 𝜓1 are orthogonal, then |𝜓0⟩ + |𝜓1⟩ and |𝜓0⟩ − |𝜓1⟩

are orthogonal and have the same length, so measuring the first qubit gives us |+⟩ with probability 1

2
. In

general,
1

√

2

(|0⟩ |𝜓0⟩ + |1⟩ |𝜓1⟩) =

1

2(
|+⟩ ⊗ (|𝜓0⟩ + |𝜓1⟩) + |−⟩ ⊗ (|𝜓0⟩ − |𝜓1⟩)

)

The probability that measuring the first qubit gives a |+⟩ is
1

4

⋅ || |𝜓0⟩ + |𝜓1⟩ ||
2
=

1

2

(1 + Re(⟨𝜓0|𝜓1⟩))

7



Collapse-Binding Implications. Define a projector onto valid openings of 0:

Π0 ∶= |0⟩ ⟨0| ⊗ ∑

𝑟0∶Com(0;𝑟0)=𝑐

|𝑟0⟩ ⟨𝑟0|

and similarly
Π1 ∶= |1⟩ ⟨1| ⊗ ∑

𝑟1∶Com(0;𝑟1)=𝑐

|𝑟1⟩ ⟨𝑟1|

Consider an adversary who comes up with a state |𝜙⟩ which can be opened to 0 or 1. That is, measuring
the first qubit of 𝑈0 |𝜙⟩ gives 0 with probability 𝑝0 and measuring the first qubit of 𝑈1 |𝜙1⟩ gives 1 with
probability 𝑝1 where 𝑝0 + 𝑝1 ≫ 1. Equivalently, setting |𝜓⟩ = 𝑈0 |𝜙⟩ and 𝑈 = 𝑈1𝑈

†

0
, we have

||Π0 |𝜓⟩ ||
2
+ ||Π1𝑈 |𝜓⟩ ||

2
= 𝑝0 + 𝑝1

𝑤𝑎𝑛𝑡

= 1 + negl(𝑛)

This formalizes the condition that no adversary can open in two ways.
What does it mean that the adversary can’t change their mind?  cannot come up with some state |𝜓⟩,

project to Π0 to get Π0 |𝜓⟩ which consists of 0 openings, and then apply some unitary map to get 𝑈Π0 |𝜓⟩

which has a significant overlap with the Π1 subspace consisting of openings of 1. That is,

||Π1𝑈Π0 |𝜓⟩ ||
2
= negl(𝑛)

Lemma 4. If ||Π1𝑈Π0 |𝜓⟩ ||
2
= 𝜀, then ||Π0 |𝜓⟩ ||

2
+ ||Π1𝑈 |𝜓⟩ ||

2
≤ 1 + 2𝜀 + 𝜀

2.

That is, if  cannot change their mind, they cannot open in two ways, and therefore satisfy sum-
binding.

Proof.

||Π0 |𝜓⟩ ||
2
+ ||Π1𝑈 |𝜓⟩ ||

2
= ||Π0 |𝜓⟩ ||

2
+ ||Π1𝑈Π0 |𝜓⟩ + Π1𝑈 (𝐼 − Π0) |𝜓⟩ ||

2

≤ ||Π0 |𝜓⟩ ||
2
+
(
||Π1𝑈Π0 |𝜓⟩ || + ||Π1𝑈 (𝐼 − Π0) |𝜓⟩ ||

)

2

= ||Π0 |𝜓⟩ ||
2
+ 𝜀

2
+ 2𝜀||Π1𝑈 (𝐼 − Π0) |𝜓⟩ || + ||Π1𝑈 (𝐼 − Π0) |𝜓⟩ ||

2

≤ ||Π0 |𝜓⟩ ||
2
+ 𝜀

2
+ 2𝜀 + ||Π1𝑈 (𝐼 − Π0) |𝜓⟩ ||

2

≤ ||Π0 |𝜓⟩ ||
2
+ ||(𝐼 − Π0) |𝜓⟩ ||

2
+ 𝜀

2
+ 2𝜀

= 1 + 2𝜀 + 𝜀
2

where the first inequality is by triangle inequality, and the second since

||Π1𝑈 (𝐼 − Π0) |𝜓⟩ || ≤ ||𝑈 (𝐼 − Π0) |𝜓⟩ || = ||(𝐼 − Π0) |𝜓⟩ || ≤ || |𝜓⟩ || = 1

using the fact that Π0 and Π1 are projectors and 𝑈 is a unitary, and the third since Π1 is a projector and 𝑈
a unitary.

We will now show that if the commitment is collapse-binding,

||Π1𝑈Π0 |𝜓⟩ ||
2
= ⟨𝜓|Π0𝑈

†
Π1𝑈Π0 |𝜓⟩ = negl(𝑛)
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Lemma 5. If the commitment is collapse-binding, for any state |𝜓⟩ and polynomial-time computable unitary
𝑈 ,

||Π1𝑈Π0 |𝜓⟩ ||
2
= negl(𝑛) .

Proof. For contradiction, suppose there is a state |𝜓⟩ and a polynomial-time computable unitary 𝑈 such
that

||Π1𝑈Π0 |𝜓⟩ ||
2
= 𝜀(𝑛) > 1/𝑝(𝑛) .

for some polynomial function 𝑝(⋅). This must mean that ||Π0 |𝜓⟩ ||
2
> 1/𝑝

′
(𝑛) for some polynomial function

𝑝
′
(⋅) as applying 𝑈 does not charge the norm and projecting to Π1 can only decrease it.

Define
|𝜙0⟩ = Π0 |𝜓⟩ and |𝜙1⟩ = Π1𝑈Π0 |𝜓⟩

The collapse-binding adversary does the following:

1. Prepare the state (proportional to) |0⟩ |𝜙0⟩ + |1⟩ |𝜙1⟩: to do this,

(a) measure |𝜓⟩ with the projective measurement {Π0, 𝐼 − Π0};
(b) if the outcome is 𝐼 − Π0, give up and output a random bit.
(c) Otherwise, do a controlled-𝑈 on |+⟩ ⊗ Π0 |𝜓⟩ to get

|0⟩ ⊗ Π0 |𝜓⟩ + |1⟩ ⊗ 𝑈Π0 |𝜓⟩

(d) Measure with Π
′
= |0⟩ ⟨0| ⊗ 𝐼 + |1⟩ ⟨1| ⊗ Π1 to get

|0⟩ ⊗ Π0 |𝜓⟩ + |1⟩ ⊗ Π1𝑈Π0 |𝜓⟩ = |0⟩ ⊗ |𝜙0⟩ + |1⟩ ⊗ |𝜙1⟩

Again, if the outcome corresponds to 𝐼 − Π
′, discard and output a random bit.

2. Send the 𝑀, 𝑅 registers of the state to the collapse-binding challenger to get

|0⟩ |𝜙0⟩ + (−1)
𝑏
|1⟩ |𝜙1⟩

3. Do a controlled-𝑈†.

4. Measure the first qubit in the 𝑋 basis. Output 𝑏′ = 0 if the outcome is |+⟩ and 𝑏′ = 1 if the outcome
is |−⟩.

The probability that an abort event does not occur in step 1(b) is at least

||Π0 |𝜓⟩ ||
2
> 1/𝑝

′
(𝑛)

as observed above, and that it does not occur in step 1(d) is at least

||Π1𝑈Π0 |𝜓⟩ ||
2
> 1/𝑝(𝑛)

If neither abort event occurs, the state prepared in step 3 is |0⟩ | ̃𝜙0⟩ + (−1)
𝑏
|1⟩ |

̃
𝜙1⟩ where

|
̃
𝜙0⟩ = Π0 |𝜓⟩ and |

̃
𝜙1⟩ = 𝑈

†
Π1𝑈Π0 |𝜓⟩
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Assume 𝑏 = 0. (The same analysis goes through when 𝑏 = 1, and the probability of measuring a |−⟩.) The
probability that measuring the first qubit in the 𝑋 basis results in a |+⟩ is

Pr[+] =
‖
‖
‖

|
̃
𝜙0⟩ + |

̃
𝜙1⟩

√

2

‖
‖
‖

2

=

1

2

⋅
(
⟨
̃
𝜙0|

̃
𝜙0⟩ + ⟨

̃
𝜙1|

̃
𝜙1⟩ + ⟨

̃
𝜙0|

̃
𝜙1⟩ + ⟨

̃
𝜙1|

̃
𝜙0⟩

)

=

1

2

⋅ (1 + 2Re(⟨ ̃𝜙1| ̃𝜙0⟩))

=

1

2

+ Re(⟨ ̃𝜙1| ̃𝜙0⟩)

=

1

2

+ ⟨𝜓|Π0𝑈
†
Π1𝑈Π0 |𝜓⟩

>

1

2

+

1

𝑝(𝑛)

(Note that ⟨ ̃𝜙1| ̃𝜙0⟩ is real.) Including the abort event, we get an advantage of 1

𝑝(𝑛)
2 .
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6 Zero-Knowledge Proofs of Knowledge

• Describe Blum’s Hamiltonicity protocol.

• Collapse-binding implies the soundness of Blum.

• Collapse-binding as the right definition: composable; works with quantum rewinding; compatible
with statistical hiding, short commitments.

• There are explicit constructions of collapse-binding commitment schemes from, e.g. lossy trapdoor
functions.
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