6.8895: Quantum Cryptography

Lecture: Pseudorandom Quantum States

Lecturers: Alex Poremba

Scribe: Vinod Vaikuntanathan

These notes have not undergone extensive editing and proofreading. Please use at your own risk.

There are several reasons that notions of random and pseudo-random quantum states are interesting and useful. It is not hard to show that a random bipartite quantum state is highly entangled; a study of random and pseudorandom states is useful in understanding the notions of entanglement and more recently, *pseudoentanglement*. In cryptography, the notion of pseudorandom quantum states has emerged as a powerful lens through which to study the question of *what is the minimal assumption in quantum cryptography*. In classical cryptography, one-way functions are minimal. Pseudorandom quantum states are interesting because (a) the existence of such states implies the existence of much of quantum cryptography, far beyond key exchange; and (b) pseudorandom states could exist even when much of classical cryptography collapses (e.g. one-way functions do not exist) and even when many complexity classes collapse (e.g. $\mathcal{P} \neq \mathcal{NP}$ and even $\mathcal{BQP} = \mathcal{QMA}$.

Notation. For $d \in \mathbb{N}$, let S(d) denote the set of unit vectors in \mathbb{C}^d , that is all $|\psi\rangle \in \mathbb{C}^d$ such that $\langle \psi | \psi \rangle = 1$. Let U(d) denote the set of all *d*-by-*d* unitary matrices (acting on \mathbb{C}^d).

1 Haar-Random Quantum States

How should one define a "random quantum state"? Let's start by comparing classical randomness with quantum randomness, starting from a simple example. Consider the case of a random bit versus a random qubit. In the classical case, the sample space is $\Omega = \{0, 1\}$, and a random qubit gives us the state

$$\mathbb{E}_{b \leftarrow \{0,1\}}[|b\rangle \langle b|] = \frac{1}{2} \cdot |0\rangle \langle 0| + \frac{1}{2} \cdot |1\rangle \langle 1| = \frac{I}{2}$$

whereas in the quantum state, it is a random unit vector, so $\Omega = S(2)$. It turns out that

$$\mathbb{E}_{|\psi\rangle \leftarrow S(d)}[|\psi\rangle\langle\psi|] = I/2$$

So, what's the difference? Imagine you have an ensemble of states $\{(p_i, v_i)\}$, you sample a state v_i at random according to the probability distribution p_i and give t copies of this state, that is, $|v_i\rangle^{\otimes t}$. In the classical case, this is $|0\rangle^{\otimes t}$ with probability 1/2, and $|1\rangle^{\otimes t}$ with probability 1/2. In the quantum case, this is $|\psi\rangle^{\otimes t}$ for a "random quantum state". While we saw above that these two states are identical (have identical density matrices) when t = 1, these are *distinguishable* the moment t is larger than 1. This is not hard to see: in the classical case (when the state is $\frac{1}{2} \cdot (|0\rangle \langle 0| + |1\rangle \langle 1|)$) with t = 2, "measuring" the two states in the Z basis gives identical results, whereas in the quantum case (when the state is $|\psi\rangle^{\otimes 2}$), the measurement will produce independent random bits.

Definition 1 (Haar Measure). The Haar measure μ_H is the unique left/right invariant measure over the unitary group U(d). That is, for every "nice" function $f : \mathbb{C}^{d \times d} \to \mathbb{C}$ and every $V \in U(d)$,

$$\mathbb{E}_{U \leftarrow U(d)}[f(U)] = \mathbb{E}_{U \leftarrow U(d)}[f(U \cdot V)] = \mathbb{E}_{U \leftarrow U(d)}[f(V \cdot U)]$$

where

$$\mathbb{E}_{U \leftarrow U(d)}[f(U)] = \int_{U(d)} f(U) \, d_{\mu_H} U$$

The definition of μ_H also extends to states in the following way:

$$\mathbb{E}_{|\psi\rangle \leftarrow S(d)}[f(|\psi\rangle\langle\psi|)] \stackrel{\text{def}}{=} \mathbb{E}_{U \leftarrow U(d)}[f(U|0\rangle\langle 0|U^{\dagger})]$$

2 The Symmetric Subspace

Let $P_d(\sigma) \in \{0, 1\}^{d^t \times d^t}$ be the matrix representation of the permutation $\sigma \in S_t$ acting on $[d]^t$. That is,

$$P_d(\sigma) = \sum_{i_1,\ldots,i_t \in [d]} |i_{\sigma(1)},\ldots,i_{\sigma(t)}\rangle \langle i_1,\ldots,i_t| .$$

Indeed, note that

$$P_d(\sigma) |i_1, \dots, i_t\rangle = |i_{\sigma(1)}, \dots, i_{\sigma(t)}\rangle$$

Let

$$\operatorname{Sym}_{t}(\mathbb{C}^{d}) = \{ |\psi\rangle \in (\mathbb{C}^{d})^{\otimes t} : P_{d}(\sigma) |\psi\rangle = |\psi\rangle \text{ for all } \sigma \in S_{t} \}$$
(1)

be a subspace of $(\mathbb{C}^d)^{\otimes t}$ which is invariant under the action of $P_d(\sigma)$ for any $\sigma \in S_t$.

We show a few important facts about the symmetric subspace and its relation to the Haar measure.

Lemma 2. For any $\rho, \sigma \in S_t$,

$$P_d(\rho)P_d(\sigma) = P_d(\rho\sigma)$$

Proof.

$$\begin{split} P_{d}(\rho)P_{d}(\sigma) &= \left(\sum_{i_{1},\dots,i_{t}\in[d]} |i_{\rho(1)},\dots,i_{\rho(t)}\rangle\langle i_{1},\dots,i_{t}|\right) \left(\sum_{i_{1},\dots,i_{t}\in[d]} |i_{\sigma(1)},\dots,i_{\sigma(t)}\rangle\langle i_{1},\dots,i_{t}|\right) \\ &= \left(\sum_{i_{1},\dots,i_{t}\in[d]} |i_{\rho(\sigma(1))},\dots,i_{\rho(\sigma(t))}\rangle\langle i_{\sigma(1)},\dots,i_{\sigma(t)}|\right) \left(\sum_{i_{1},\dots,i_{t}\in[d]} |i_{\sigma(1)},\dots,i_{\sigma(t)}\rangle\langle i_{1},\dots,i_{t}|\right) \\ &= \sum_{i_{1},\dots,i_{t}\in[d]} |i_{\rho(\sigma(1))},\dots,i_{\rho(\sigma(t))}\rangle\langle i_{\sigma(1)},\dots,i_{\sigma(t)}|i_{\sigma(1)},\dots,i_{\sigma(t)}\rangle\langle i_{1},\dots,i_{t}| \\ &= \sum_{i_{1},\dots,i_{t}\in[d]} |i_{\rho(\sigma(1))},\dots,i_{\rho(\sigma(t))}\rangle\langle i_{1},\dots,i_{t}| \\ &= P_{d}(\rho\sigma) \end{split}$$

where the third equality is due to orthogonality of the basis vectors $|i_1, ..., i_t\rangle$ and $|i'_1, ..., i'_t\rangle$ whenever $(i_1, ..., i_t) \neq (i'_1, ..., i'_t)$.

Lemma 3. The orthogonal projector onto $Sym_t(\mathbb{C}^d)$ is

$$\Pi_{sym}^{d,t} = \frac{1}{t!} \sum_{\sigma \in S_t} P_d(\sigma)$$

Proof. First, note that for any $\rho \in S_t$,

$$P_d(\rho) \cdot \Pi^{d,t}_{sym} = \frac{1}{t!} \sum_{\sigma \in S_t} P_d(\rho) P_d(\sigma) = \frac{1}{t!} \sum_{\sigma \in S_t} P_d(\rho\sigma) = \frac{1}{t!} \sum_{\sigma \in S_t} P_d(\sigma) = \Pi^{d,t}_{sym}$$
(2)

Similarly,

$$\Pi^{d,t}_{sym}P_d(\rho) = \Pi^{d,t}_{sym}$$

It is then straightforward to check that

$$(\Pi^{d,t}_{sym})^2 = \Pi^{d,t}_{sym}$$

which is a necessary and sufficent condition for $\Pi^{d,t}_{sym}$ to be an orthogonal projector.

We now prove that $\operatorname{Im}(\Pi_{sym}^{d,t}) = \operatorname{Sym}_t(\mathbb{C}^d)$. In one direction, for any $|\psi\rangle$ and any $\rho \in S_t$,

$$P_d(\rho) \cdot \Pi_{sym}^{d,t} |\psi\rangle = \Pi_{sym}^{d,t} |\psi\rangle$$

by Equation 2, meaning that $\operatorname{Im}(\Pi_{sym}^{d,t}) \subseteq \operatorname{Sym}_t(\mathbb{C}^d)$. In the other direction, if $|\psi\rangle \in \operatorname{Sym}_t(\mathbb{C}^d)$,

$$\Pi_{sym}^{d,t} |\psi\rangle = \frac{1}{t!} \sum_{\sigma \in S_t} P_d(\sigma) |\psi\rangle = \frac{1}{t!} \cdot t! \cdot |\psi\rangle = |\psi\rangle$$

meaning that $|\psi\rangle \in \text{Im}(\Pi^{d,t}_{sym})$. Thus, $\text{Sym}_t(\mathbb{C}^d) \subseteq \text{Im}(\Pi^{d,t}_{sym})$ as well, establishing equivalence.

To show the next, and the most crucial, theorem, we need Schur's lemma from representation theory. We state it here in elementary language, but refer the reader to a standard textbook, e.g. [Ser77], for the (relatively simple) proof.

Theorem 4.

$$\mathbb{E}_{|\psi\rangle \leftarrow S(d)}[|\psi\rangle \langle \psi|^{\otimes t}] = \frac{\prod_{sym}^{d,t}}{\mathsf{Tr}(\prod_{sym}^{d,t})}$$

where $\operatorname{Tr}(\Pi^{d,t}_{sym}) = \operatorname{dim}(\operatorname{Sym}_t(\mathbb{C}^d)) = {t+d-1 \choose t}.$

Proof. Letting

$$\rho := \mathbb{E}_{|\psi\rangle \leftarrow S(d)}[|\psi\rangle \langle \psi|^{\otimes t}],$$

we first note that for any unitary U,

$$U^{\dagger}\rho U = \rho$$

An application of Schur's lemma tells us that ρ is proportional to the identity operator on the space $[d]^n$ which is indeed $\Pi_{sym}^{d,t}$. The right normalization constant is indeed the trace of $\Pi_{sym}^{d,t}$ since the trace of the LHS is 1.

For more facts about and applications of the symmetric subspace, we refer the reader to Harrow's excellent survey [Har13].

3 Pseudorandom Quantum States (PRS): Definition

Definition 5 (Pseudorandom Quantum State). Let $\mathcal{K} = \{K_{\lambda} \subseteq \{0, 1\}^{\lambda}\}_{\lambda \in \mathbb{N}}$ be a subset of strings that define the key-space of the PRS. For a given λ and $n \in \mathbb{N}$, a family of states

$$\Phi_{\lambda} := \left\{ \left| \phi_k \right\rangle \in S(2^n) \right\}_{k \in K_\lambda}$$

is a pseudorandom quantum state if:

• There is a QPT algorithm Gen such that

$$\operatorname{Gen}(1^{\lambda}, k, |0\rangle) = |\phi_k\rangle$$

• For every polynomial function $poly(\cdot)$, $t = poly(n, \lambda)$, and every QPT adversary A,

$$\left| \Pr_{k \leftarrow K_{\lambda}} [A(|\phi_k\rangle \langle \phi_k|^{\otimes t})] - \Pr_{|\phi\rangle \leftarrow S(2^n)} [A(|\phi\rangle \langle \phi|^{\otimes t})] \right| = \operatorname{negl}(\lambda)$$
(3)

We will also write this succinctly as

$$\mathbb{E}_{k \leftarrow K_{\lambda}}[|\phi_{k}\rangle\langle\phi_{k}|^{\otimes t}] \approx_{c} \mathbb{E}_{|\phi\rangle\leftarrow S(2^{n})}[|\phi\rangle\langle\phi|^{\otimes t}]$$
(4)

A related notion is that of a state *t*-design which can be viewed as both a strengthening and weakening of a PRS: a weakening in the sense that pseudorandomness is only required to hold given an a-priori bounded polynomial number of copies of the state, namely t = t(n) copies, and a strengthening in the sense that the states on both sides of equation 4 are required to be *identical* and not merely computationally indistinguishable. In this sense, the condition defining a state *t*-design is analogous to *t*-wise independence, whereas that defining a pseudorandom quantum state is analogous to (computational) pseudorandomness.

Definition 6 (State *t*-design). An ensemble $v = \{p_i, |\psi_i\rangle\}$ over *d*-dimensional states is a state *t*-design if

$$\mathbb{E}_{|\psi\rangle\leftarrow\nu}[|\psi\rangle\langle\psi|^{\otimes t}] = \mathbb{E}_{|\psi\rangle\leftarrow S(d)}[|\psi\rangle\langle\psi|^{\otimes t}]$$
(5)

A weakening of the notion of state *t*-design asks for equation 5 to be approximate, in the sense that the LHS are RHS are ε -close in trace distance for some $\varepsilon = \varepsilon(n)$.

4 PRS Construction

We are now ready to show how to construct a pseudo-random quantum state. We will refer to the construction as a binary phase PRS, for a reason that will become clear shortly.

Theorem 7. If post-quantum secure one-way functions exist, then there exists a family of pseudo-random quantum states.

Construction. Since post-quantum secure one-way functions imply post-quantum secure pseudorandom functions, we will use a pqPRF family $\mathcal{F} = \{F_k\}_{k \in \{0,1\}^{\lambda}}$ as a building block.

- Gen (1^{λ}) samples a PRF key $k \leftarrow \{0, 1\}^{\lambda}$.
- Eval(*k*) outputs the quantum state

$$|\psi_k
angle = rac{1}{\sqrt{2^n}} \cdot \sum_{x \in \{0,1\}^n} (-1)^{F_k(x)} |x
angle$$

We first show that Eval runs in quantum polynomial-time, making a single quantum query to the PRF. To prepare $|\psi_k\rangle$, Eval starts by preparing

$$H^{\otimes n} \left| 0 \right\rangle = \frac{1}{\sqrt{2^n}} \cdot \sum_{x \in \{0,1\}^n} \left| x \right\rangle_{\mathcal{X}}$$

Then, compute the PRF F_k in superposition to get

$$rac{1}{\sqrt{2^n}} \cdot \sum_{x \in \{0,1\}^n} \ket{x}_\mathcal{X} \ket{F_k(x)}_\mathcal{Y}$$

Compute $I_X \otimes Z_Y$ (that is, Z acting on the second register) to get

$$rac{1}{\sqrt{2^n}} \cdot \sum_{x \in \{0,1\}^n} (-1)^{F_k(x)} \ket{x}_\mathcal{X} \ket{F_k(x)}_\mathcal{Y}$$

Finally, uncompute F_k to get the PRS state (where we suppress the register name)

$$\ket{\psi_k} \, := rac{1}{\sqrt{2^n}} \cdot \sum_{x \in \{0,1\}^n} (-1)^{F_k(x)} \ket{x}$$

Since all phases are binary, this construction is also called a binary phase PRS.

Security. We now prove the security of this construction. Recall that the goal is to show that

$$\mathbb{E}_{k \leftarrow K}[|\phi_k\rangle \langle \phi_k|^{\otimes t}]$$
 and $\mathbb{E}_{|\psi\rangle \leftarrow S(d)}[|\psi\rangle \langle \psi|^{\otimes t}]$

. .

are computationally indistinguishable to any quantum polynomial-time distinguisher, for any $t = poly(\lambda)$. Consider the following sequence of hybrid expressions, each of which defines a mixed state.

• Hybrid 1 is the (mixed) state

$$\mathbb{E}_{k \leftarrow K}[|\phi_k\rangle \langle \phi_k|^{\otimes t}]$$

where F_k is the PRF.

• Hybrid 2 is the (mixed) state

$$\mathbb{E}_{f \leftarrow F}[|\phi_f\rangle \langle \phi_f|^{\otimes t}]$$

where *f* is a uniformly random function from $\{0, 1\}^n$ to $\{0, 1\}$ and

$$|\phi_f\rangle = \frac{1}{\sqrt{2^n}} \cdot \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$$

• Hybrid 3. To define Hybrid 3, let's write out explicitly the state in Hybrid 2 first:

$$\mathbb{E}_{f \leftarrow F}[|\phi_f\rangle \langle \phi_f|^{\otimes t}] = 2^{-nt} \cdot \sum_{x_1, \dots, x_t, y_1, \dots, y_t} \mathbb{E}_{f \leftarrow F}[(-1)^{f(x_1) + \dots + f(x_t) + f(y_1) + \dots + f(y_t)}] |x_1, \dots, x_t\rangle \langle y_1, \dots, y_t|$$

Project this state onto the subspace of distinct $x_1, ..., x_t$ and distinct $y_1, ..., y_t$, and post-select on the event that the x_i are distinct and the y_i are distinct. This will be the state

$$\frac{1}{\binom{2^{n}+t-1}{t}} \cdot \sum_{\substack{x_1, \dots, x_t \text{ distinct,} \\ y_1, \dots, y_t \text{ distinct}}} \mathbb{E}_{f \leftarrow F} [(-1)^{f(x_1) + \dots + f(x_t) + f(y_1) + \dots + f(y_t)}] |x_1, \dots, x_t\rangle \langle y_1, \dots, y_t|$$
(6)

• Hybrid 4 is the (mixed) state

$$\mathbb{E}_{|\psi\rangle \leftarrow S(d)}[|\psi\rangle \langle \psi|^{\otimes t}]$$

Lemma 8. Hybrids 1 and 2 are computationally indistinguishable.

Proof. The states in hybrid 1 and 2 can be prepared with *t* oracle queries either to a function f_k chosen at random from \mathcal{F} or to a uniformly random function *f*. By the post-quantum security of the PRF family \mathcal{F} (against an adversary that can make quantum superposition queries), no quantum polynomial-time distinguisher can tell these two oracles apart, which in turns implies that the two hybrids are computationally indistinguishable.

Lemma 9. Hybrids 2 and 3 are statistically indistinguishable.

Proof. This follows by the gentle measurement lemma (Lemma 11) as the only difference between hybrid 3 can be obtained from hybrid 2 by projecting to the subspace of $[2^n]^t$ where all *t* components are different. This happens with overwhelming probability as long as $t \ll 2^{n/2}$, therefore an application of gentle measurement lemma does the job.

Lemma 10. Hybrids 3 and 4 are identical.

Proof. The expectation in equation 6 is 0 whenever $x_1, ..., x_t$ is *not* a permutation of $y_1, ..., y_t$ and 1 otherwise. Then, this expectation is exactly $\frac{\prod_{sym}^{d_t}}{\operatorname{Tr}(\prod_{sym}^{d_t})}$ which is precisely Hybrid 4, by Theorem 4.

5 Supporting Lemmas

Lemma 11 (Gentle Measurement Lemma). Let ρ be a state and Π be a projector such that

$$\operatorname{Tr}(\Pi \rho) \ge 1 - \varepsilon$$

for some $\varepsilon \geq 0$. Then,

$$\mathsf{TD}\left(\rho, \frac{\Pi \rho \Pi}{\mathsf{Tr}(\Pi \rho)}\right) \leq \sqrt{\varepsilon}$$

Proof. First consider the case when ρ is a pure state $|\psi\rangle\langle\psi|$. Then, the fidelity between ρ and the post-measurement state $\frac{\Pi\rho\Pi}{\text{Tr}(\Pi\rho)}$ is

$$\frac{\left<\psi\right|\Pi\left|\psi\right>\left<\psi\right|\Pi\left|\psi\right>}{\left<\psi\right|\Pi\left|\psi\right>}=\left<\psi\right|\Pi\left|\psi\right>\geq1-\varepsilon$$

where the last equality is by assumption. By the monotonicity of the fidelity function (Lemma ??), this is true for a general mixed state as well. That is,

$$\mathsf{F}\left(\rho, \frac{\Pi\rho\Pi}{\mathsf{Tr}(\Pi\rho)}\right) \ge 1 - \varepsilon$$

Using the relation between the fidelity and trace distance (Lemma 12) finishes up the proof. \Box

Lemma 12 (Fidelity and Trace Distance). The following bound applies to the trace distance and the fidelity between two quantum states $\rho, \sigma \in S(H)$ that live on a Hilbert space H:

$$1 - \sqrt{\mathsf{F}(\rho, \sigma)} \le \mathsf{TD}(\rho, \sigma) \le \sqrt{1 - \mathsf{F}(\rho, \sigma)}$$

References

- [Har13] Aram W. Harrow. The church of the symmetric subspace, 2013.
- [Ser77] Jean-Pierre Serre. Linear representations of finite groups., volume 42 of Graduate texts in mathematics. Springer, 1977.