
6.S895: Quantum Cryptography

Lecture 1: Introduction toQuantum Cryptography

Lecturer: Anand Natarajan Scribe: Vinod Vaikuntanathan

1 WhyQuantum Cryptography?

Why study quantum cryptography? And why now—when, despite enormous progress on the hardware
side, we are still far from having a working universal quantum computer?

We believe that the case for cryptographers to study quantum cryptography is clear: we live in a
quantum world, and cryptography in this world is fundamentally different from cryptography in a purely
classical world. Moreover, we think that even people whose primary interest is in quantum information
processing should be interested in quantum cryptography. There are several reasons for this.

• Quantum information enables classically impossible cryptographic capabilities. Quantum
information behaves in a qualitatively different way from classical information. Already at the in-
formation theoretic level, this gives quantum systems nontrivial capabilities that are provably im-
possible in the classical world. Famous examples of information-theoretic quantum cryptography
are quantum money and quantum key distribution, which exploit two uniquely quantum features:
the uncertainty principle and the no-cloning theorem. Quantum key distribution is possible in the
classical world,1 albeit under unproven computational assumptions. Quantum money is simply not
achievable in a classical world.

• Quantum computation breaks many classical cryptosystems and, perhaps more subtly, in-
validates certain proofs of security of cryptographic protocols. Most modern cryptography is
founded on computational complexity, and relies on the computational hardness of certain problems.
We know that some problems that seem classically intractable can actually be solved efficiently with
a quantum computer; most famously, Shor showed that a quantum computer can efficiently factor
large numbers and solve the discrete logarithm problem, and thus break cryptosystems like RSA, El
Gamal (both the finite field version and the elliptic curve version).
In fact, just recovering the capabilities of classical cryptography in a quantum world is a subtle and
nontrivial task—it turns out to be not enough to simply replace factoring with a different problem
like Learning With Errors which is presumed to be hard to solve with quantum algorithms! This
subfield of cryptography, which relies on tools and techniques from quantum computation, is often
called post-quantum cryptography.

• Classical-Quantum Interactions. The usual questions from cryptography can be asked here, e.g.
the questions of delegated computation and blind computation. But there are new questions as well,
e.g. tests of quantumness that give a way for a classical computer to test whether a device is “really
quantum”.

• Quantum Complexity Theory 2.0. In a quantum world, it becomes meaningful to discuss com-
putational problems with quantum inputs or outputs. For example: How hard is it to prepare a
quantum state? How hard is to come up with a unitary map that maps certain quantum states to

1… in a well-defined model with authenticated classical channels, in a sense that will be clear in a few lectures.
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others? How hard is to learn a classical description from many copies of a quantum state? More
recently, we have come to realize that these problems have a rich complexity theory of their own,
and are a source of interesting new hardness assumptions for cryptography.

• Connections to Fundamental Physics. What does cryptography have to do with black holes?
There are new, albeit speculative, connections between the two fields. We may get to this at the end
of the class, or this might be a good project topic.

The Five Worlds of Quantum. There are several possibilities in between a fully classical and fully
quantum world, and many interesting things are possible in the intermediate worlds.

1. NoQuantum. We are almost definitely not in this world.

2. BB84. Aworldwhere single qubit states can be prepared and transmitted over long distances. We are
already almost here: for example, quantum key distribution protocols that work over long distances
have been implemented.

3. NISQworld (noisy intermediate scale quantum computers). We are close to here, but don’t know
what we can do yet.

4. Quantum Feudalism: Only very specialized labs (e.g. Google, Microsoft, IBM) possess large-scale
qauntum computers. Users can interact with them classically or via single-qubit communication.

5. Quantumania (or,Quantomnia?): A world where everyone has quantum computers, our iPhones
are quantum etc.

2 Quantum Basics

We start with the basics of quantum information and computation. Our goal here is not to be exhaustive,
rather to give the reader enough background to understand the rest of the course. We will also introduce
relevant mathematical tools along the way.

2.1 Linear Algebra

We refer the reader to [Wat18] for an extensive discussion of the relevant linear algebraic definitions and
facts, and only recall the most important ones below. Let  be a finite-dimensional Hilbert space, typically
a subspace of ℂ𝑑 .

• The ket notation |𝜓⟩ will refer to a column vector in ℂ𝑑 .

• The bra notation ⟨𝜓| is the conjugate transpose of |𝜓⟩.

• 𝜓 denotes the (component-wise) complex conjugate, and 𝜓† is the complex conjugate transpose of a
column vector 𝜓. (Some authors use 𝜓∗ to refer to the complex conjugate or the conjugate transpose;
we prefer to avoid the ∗ notation.)

• Thus, ⟨𝜓|𝜓⟩ is the squared norm of |𝜓⟩, and |𝜓⟩ ⟨𝜓| is the outer product of |𝜓⟩ with itself, which
we will often view as a rank-1 matrix in ℂ𝑑×𝑑 . For example, a matrix 𝑀 in this notation is 𝑀 =

∑𝑖,𝑗∈[𝑑]𝑀𝑖,𝑗 |𝑖⟩ ⟨𝑗 |.
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For Hilbert spaces  and  ′, we define the following classes of linear operators.

• ( , ′) is the set of all linear operators from  to  ′, and () the set of all linear operators from
 to itself.

• () ⊆ () is the set of all Hermitian operators from  to itself, where 𝑋 ∈ () is Hermitian
if 𝑋 = 𝑋†. Hermitian matrices have real eigenvalues and can be diagonalized. That is, 𝑋 = 𝑈𝐷𝑈†

where 𝐷 is a diagonal matrix with real entries, and 𝑈 is a unitary matrix.

• () ⊆ () is the set of all positive semi-definite operators (also called positive operators) from
to itself. An operator𝑋 ∈ () is positive semi-definite if𝑋 = 𝑌 †𝑌 for some 𝑌 ∈ (). Equivalently:

– for all 𝑣 ∈  , 𝑣†𝑋𝑣 ≥ 0; or
– all eigenvalues of 𝑋 are non-negative.

• () ⊆ () is the set of all densitymatrices, i.e. positive operators with unit trace. The eigenvalues
of such a matrix are all positive, and their sum, therefore the eigenvalues can be interpreted as
probabilities.

• Proj() ⊆ () is the set of all projection operators, i.e. the set of all Π ∈ () where Π2 = Π.

•  () ⊆ 𝐿() is the set of all unitary operators, i.e. the set of all 𝑈 ∈ 𝐿() where 𝑈𝑈† = 𝑈†𝑈 = 1 .

2.2 Quantum States

Pure States. A pure state is a unit vector in |𝜓⟩ ∈  , a 𝑑-dimensional Hilbert space where 𝑑 is the size
of the state space. That is, ⟨𝜓|𝜓⟩ = 1. When necessary, we will use subscripts to denote which registers
contains a state, e.g. by indicating |𝜓⟩𝐴 to mean that the state |𝜓⟩ lives in register 𝐴.

We will ask questions of the following form:

• Given |𝜓⟩𝐴𝐵 what is the state of the 𝐴 register?

• How do we model classical randomness over quantum states, e.g. to say that the state of a quantum
state is |𝜓𝑖⟩ with probability 𝑝𝑖.

Both questions have the same answer, the density matrix, an important notion in quantum information.
Let’s start with the notion of an ensemble of pure states.

Ensemble of Pure States. An ensemble of pure states, also called amixed state, is a collection {𝑝𝑖, |𝜓𝑖⟩}𝑚𝑖=1
where 𝑝𝑖 are non-negative real numbers with ∑

𝑚
𝑖=1 𝑝𝑖 = 1 and each |𝜓𝑖⟩ is a pure state. (The |𝜓𝑖⟩ are not

necessarily orthogonal.)

Density Matrices. An ensemble of pure states is concisely modeled by a density matrix

𝜌 =

𝑚

∑

𝑖=1

𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖| ∈ () (1)

which is positive semi-definite (and therefore Hermitian), and has trace 1. Conversely, by the spectral
theorem, any suchmatrix has a decomposition of the form of equation 1, and corresponds to some ensemble
of pure states.
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The ensemble of pure states can be derived from a densitymatrix by looking at the eigendecomposition:
by positive definiteness, we know that the eigenvalues are all real and positive; and since the matrix has
trace 1, we know that the eigenvalues sum up to 1. Thus, the eigenvalues can be interpreted as probabilities,
and the eigenvectors as the corresponding pure states.

We note that distinct ensembles of states could correspond to the same density matrix. For example,
the ensembles {( 1

2
, |0⟩), ( 1

2
, |1⟩)} and {( 1

2
, |+⟩), ( 1

2
, |−⟩)} correspond to the same mixed state

𝜌 =
(

1
2

0

0 1
2
)

(2)

We note that this happens when 𝜌 has an eigenvalue of multiplicity greater than 1 (though not only then!).

Multipartite systems and the partial trace. If we have several quantum systems, the joint state space
is the tensor product of the Hilbert spaces of the individual systems. For instance, if we have two systems
associated with Hilbert spaces  and  , respectively, then the space of joint states of the two systems
is  ⊗  . Note that most states in the tensor product space cannot be factorized themselves as tensor
products. Such states are called entangled states. States that can be factorized this way are called product
states.

If we have a joint state 𝜌 , then we can assign a state to a single system, say  , by applying the
partial trace:

𝜌 = Tr [𝜌 ] =
𝑑

∑

𝑖=1

(𝐼 ⊗ ⟨𝑖|)𝜌 (𝐼 ⊗ |𝑖⟩).

Purification (“The Church of the Larger Hilbert Space”). Any ensemble of states {(𝑝𝑖, |𝜓𝑖⟩)}𝑚𝑖=1 over
 can be represented as the partial trace of a pure state defined over a larger Hilbert space  ⊗  . For
example, the ensemble under consideration can be purified as

|Ψ⟩ =

𝑚

∑

𝑖=1

√
𝑝𝑖 ⋅ |𝜓𝑖⟩ ⊗ |𝑖⟩

where {|𝑖⟩} form a basis of the 𝑚-dimensional Hilbert space  . Indeed,
𝑚

∑

𝑖=1

(𝐼 ⊗ ⟨𝑖|) |Ψ⟩ ⟨Ψ| (𝐼 ⊗ |𝑖⟩) =

𝑚

∑

𝑖=1

𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖| = 𝜌,

the density matrix associated to the ensemble. Note, however, that this is but one of infinitely many
purifications of the same ensemble of states. The following lemma states that any two such purifications
are related by a unitary map applied to the purifying register.

Lemma 1. For any two purifications |Ψ1⟩ , |Ψ2⟩ ∈  ⊗  of the same ensemble of states over the state space
 , there is a unitary map 𝑈 ∶  →  such that

|Ψ2⟩ = (𝐼 ⊗ 𝑈 ) |Ψ1⟩

For example, the density matrix 𝜌 in equation 2 can be purified in three ways as
|00⟩ + |11⟩

√
2

,
|++⟩ + |−−⟩

√
2

, and |00⟩ + |01⟩ + |10⟩ − |11⟩

2

The first two of these are exactly the same state but the third can be transformed into the first (or the
second) by applying the unitary map 𝐼 ⊗ 𝐻 .
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2.3 Entanglement and the maximally entangled state

We say that a pure state of a bipartite (or multipartite) system is entangled if it cannot be written as a tensor
product of states of the individual systems:

|𝜓⟩ ≠ |𝜙⟩ ⊗ |𝜒 ⟩ .

This definition extends to mixed states: a mixed state 𝜌 is entangled if it can’t be written as an ensemble of
pure product states. (Unentangled mixed states are called “separable”; note that this does not necessarily
mean product, as such states can still be classically correlated.)

An extremely useful state is the maximally entangled state. In fact, we are abusing terminology a bit:
many states are maximally entangled, but we will use the term to refer to a particular bipartite state, on
two systems  and  of equal dimension 𝑑:

|Φ⟩ =
1
√
𝑑
∑

𝑖

|𝑖⟩ ⊗ |𝑖⟩ .

The special case where 𝑑 = 2 is often called the EPR pair state

|00⟩ + |11⟩
√
2

.

Mathematically, this state is a useful object for “moving” operators between two systems. In particular,
we have the identity

(𝑀 ⊗ 𝐼 ) |Φ⟩ = (𝐼 ⊗ 𝑀
𝑇
) |Φ⟩ ,

where𝑀 is any square matrix. This identity is at the heart of quantum teleportation. Another way in which
this state is useful is that it lets us express the “vectorization” of a matrix

𝑀 = ∑

𝑖𝑗

𝑀𝑖𝑗 |𝑖⟩ ⟨𝑗 | ↦ vectorize(𝑀) = ∑

𝑖𝑗

𝑀𝑖𝑗 |𝑖⟩ ⊗ |𝑗⟩ .

It can be checked that

(𝑀 ⊗ 𝐼 ) |Φ⟩ =
1
√
𝑑
∑

𝑖𝑗𝑘

𝑀𝑖𝑗 (|𝑖⟩ ⟨𝑗 | ⊗ 𝐼 )(|𝑘⟩ ⊗ |𝑘⟩) (3)

=
1
√
𝑑
∑

𝑖𝑗

𝑀𝑖𝑗 |𝑖⟩ ⊗ |𝑗⟩ (4)

=
1
√
𝑑
vectorize(𝑀). (5)

This operation is often useful; it is the principle behind the Choi representation of quantum channels,
which we will see later.

2.4 Quantum Computations andQuantum Channels

Most basically, quantum computation is performed via unitary matrices 𝑈 ∶  →  where 𝑈†𝑈 = Id.
These map quantum states (unit vectors in  ) to other quantum states. A more general definition is that
of a quantum channel:
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Definition 2. A quantum channel from a Hilbert space  to a Hilbert space  is a linearmap Φ ∶ () →

() such that

1. Φ is completely positive: for every Hilbert space , the map Φ ⊗ Id is positive; that is, for every
𝜌 ∈ ( ⊗),

(Φ ⊗ Id)𝜌 ∈ ( ⊗);

2. Φ is trace-preserving: for every 𝜌 ∈ (),

Tr (Φ(𝜌)) = Tr (𝜌) .

While we define a channel as acting on any linear map, we will typically apply it to density matrices, i.e.
𝜌 ∈ ().

Any quantum channel is a unitary on a larger Hilbert space. This is the content of Stinespring’s dilation
theorem, stated formally below.

Lemma 3 (Stinespring). For any quantum channel 𝑇 ∶ 𝑆(1) → 𝑆(2), there are Hilbert spaces 1 and 2

and a unitary map 𝑈 ∶ 1 ⊗ 1 → 2 ⊗ 2 such that for any 𝜌 ∈ 𝑆(1),

𝑇 (𝜌) = Tr2 [𝑈 (𝜌 ⊗ |0⟩ ⟨0|1
)𝑈

†
] .

2.5 Modeling classical information with quantum mechanics

In cryptography we usually imagine that we have some classical parties who are using quantum devices
to perform a task.

• Can always model classical operations with quantum mechanics

• A deterministic classical state turns into a pure computational basis state.

• Classical randomness can be simulated using pure quantum states as well! Replace each uniformly
random coin with a |+⟩ state.

• Any deterministic classical computation corresponds to a unitary (acting on a possibly larger sys-
tem). Concretely, if one has a classical boolean circuit, can convert it into a unitary by first converting
into a classical reversible circuit, adding ancilla bits as necessary. Then each classical reversible gate
automatically lifts to a unitary quantum gate.

• A randomized computation is just a deterministic computation that takes in a tape of random coins
as an input. Often useful to represent this “coherently”: convert the random coins to |+⟩ states, and
the computation to a unitary

2.6 Measurements

Most basically, given a system in a pure state |𝜓⟩ = ∑𝑗 𝛼𝑗 |𝑗⟩ a computational basis measurement is a
randomized process that outputs outcome 𝑗 with probability |𝛼𝑗 |

2, and leaves the system in the state |𝑗⟩.
More generally, a von Neumann measurement or projective measurement is specified by a collection

of pairwise orthogonal projectors {Π𝑘} such that ∑𝑘 Π𝑘 = 𝐼 . An projector Π𝑘 is a Hermitian matrix that
satisfies Π2

𝑘 = Π𝑘 . The pairwise orthogonality condition is that Π𝑘Π𝓁 = 0 for any 𝑘 ≠ 𝓁.
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Performing the measurement returns the outcome 𝑘 with probability

Pr[𝑘] = ⟨𝜓|Π𝑘 |𝜓⟩ = ‖Π𝑘 |𝜓⟩ ‖
2
,

and leaves the system in the state Π𝑘 |𝜓⟩ /‖Π𝑘 |𝜓⟩ ‖. It is easy to see that the computational basis measure-
ment is a special case of this, with one projector Π𝑘 = |𝑘⟩ ⟨𝑘| for each basis element |𝑘⟩.

There is an even more general type of measurement called a POVM measurement. This is specified by
a collection of PSD matrices {𝑀𝑘} such that ∑𝑘𝑀𝑘 = 𝐼 . The measurement returns the outcome 𝑘 with
probability

Pr[𝑘] = ⟨𝜓|𝑀𝑘 |𝜓⟩ = Tr[𝑀𝑘 |𝜓⟩ ⟨𝜓|]

and leaves the system in the mixed state

𝜌 =

√
𝑀𝑘 |𝜓⟩ ⟨𝜓|

√
𝑀𝑘

Tr[𝑀𝑘 |𝜓⟩ ⟨𝜓|]
.

POVM measurements turn out to be the most general type of measurement. Moreover, just like with
channels and unitaries, it turns out that every POVM measurement is equivalent to a projective measure-
ment on the system after adjoining an ancilla register. (POVM : projective measurement :: Channels :
Unitaries.) This is called the Naimark dilation theorem.

All these formulas can be generalized to mixed state inputs. The most useful one to remember is the
probability for outcome 𝑘 in a POVM measurement of {𝑀𝑘} on state 𝜌 is

Pr[𝑘] = Tr[𝑀𝑘𝜌].

A binary measuement {Π0,Π1} can be translated into an observable 𝑂 = Π0 − Π1 which is just a
Hermitian matrix 𝑂† = 𝑂 and 𝑂2 = 𝐼 . The expected value of the measurement can then be written as

𝔼 (−1)
𝑏
= Pr[0] − Pr[1] = ⟨𝜓|𝑂 |𝜓⟩

2.7 The Pauli matrices

For working with qubits, an extremely useful set of matrices is the Paulis.

𝑋 =
(

0 1

1 0)
, 𝑌 =

(

0 −𝑖

𝑖 0)
, 𝑍 =

(

1 0

0 −1)
.

(To remember the 𝑌 matrix, a useful mnemonic is “minus 𝑖 flies high.”)
These are all binary observables, and therefore also unitaries. So they can be viewed as describing both

measurements as well as transformations of quantum states.
The eigenstates of 𝑋 and 𝑍 are very common, and denoted |0⟩ , |1⟩ , |+⟩ = 1√

2
(|0⟩ + |1⟩), 1√

2
(|0⟩ − |1⟩).

A related matrix that is useful (and which is also a binary observable) is the Hadamard matrix

𝐻 =
1
√
2 (

1 1

1 −1)
.

This has the useful property of mapping 𝑋 eigenstates to corresponding eigenstates of 𝑍 , and vice versa,
which follows from the relation

𝐻𝑋 = 𝑍𝐻.
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3 An example protocol: Wiesner’sQuantum Money

In 1970, Wiesner came up with the very first protocol to use quantum information in an interesting way
(thought it was only published in 1983). This was his protocol for quantum money.

The idea is the following: a classical banknote can always be forged in principle (with a good enough
scanner and printer, the right paper, good enough ink, etc.). This is essentially because classical information
can be copied without disturbance. But quantum information is different: measurement will in general
disturb a quantum state. Could a banknote consisting of quantum particles be physically impossible to
forge without damaging it?

Wiesner’s scheme was as follows. The mint generates banknotes, that consist of 𝑛 qubits each. To
generate a fresh banknote, the bank chooses a random serial number 𝑠 ∈ {0, 1}2𝑛, and a pair of random
strings 𝑎, 𝑏 ∈ {0, 1}2𝑛. It then creates the state

|𝜓𝑠⟩ = 𝐻
⊗𝑎

|𝑏⟩ .

This state is a product state. The 𝑖th qubit is in the state

• |0⟩ if 𝑎𝑖, 𝑏𝑖 = 00,

• |1⟩ if 𝑎𝑖, 𝑏𝑖 = 01,

• |+⟩ if 𝑎𝑖, 𝑏𝑖 = 10,

• |−⟩ if 𝑎𝑖, 𝑏𝑖 = 11.

The bank writes down (𝑠, 𝑎, 𝑏) in its secret ledger, and then publishes the pair (𝑠, |𝜓𝑠⟩) as the banknote.
Now, suppose I want to use a quantum banknote to buy something. The banknote will be sent to the

bank for verification. The bank will look up the serial number 𝑠 in the secret ledger, and then measure
each qubit in the 𝑋 or 𝑍 basis according to 𝑎, and check that the outcomes match 𝑏. If the note was valid,
this process does not damage the state at all, and the bank accepts. If the note was far from a valid note,
the bank will reject with decent probability. The probability that the bank accepts a state |𝜙⟩ for a serial
number 𝑠 is given by

Pr[𝑎𝑐𝑐𝑒𝑝𝑡] = | ⟨𝜓𝑠 |𝜙⟩ |
2
.

Wiesner claimed that this scheme was secure. What this means precisely will be specified in future
lectures, but at a minimum, it means that an adversary should have a low chance of being able to generate
two banknotes that both pass the bank’s verification procedure for the same serial number. Why is this
true?

Heuristically, the idea is that the adversary cannot learn the state of the banknote to copy it, because
they have no ideawhich basis each qubit is in. If they accidentallymeasure a |0/1⟩ qubit in the |±⟩ basis, this
would return a uniformly random outcome, and destroy the state. With 𝑛 qubits, the chance of guessing
all the bases correctly should surely be exponentially small in 𝑛…

How do we make this idea rigorous? We will build towards this next time.
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